∣ q 1 ∣ = ∣ q 2 ∣ = ∣ q 3 ∣ = q \lvert q_1\rvert=\lvert q_2\rvert=\lvert q_3\rvert=q ∣ q 1 ∣ = ∣ q 2 ∣ = ∣ q 3 ∣ = q
r = 4 c m r=4cm r = 4 c m
∣ E → 1 ∣ = ∣ E → 3 ∣ = E = 1 4 π ϵ 0 ⋅ q r 2 = 1 4 ⋅ 3.14 ⋅ 8.85 ⋅ 1 0 − 12 ⋅ 2 ⋅ 1 0 − 6 0.0 4 2 = 11.25 ⋅ 1 0 6 V / m \lvert \overrightarrow{E}_1\rvert=\lvert \overrightarrow{E}_3\rvert=E=\frac{1}{4\pi\epsilon_0}\cdot \frac{q}{r^2}=\frac{1}{4\cdot 3.14\cdot 8.85\cdot 10^{-12}}\cdot \frac{2\cdot10^{-6}}{0.04^2}=11.25\cdot 10^6V/m ∣ E 1 ∣ = ∣ E 3 ∣ = E = 4 π ϵ 0 1 ⋅ r 2 q = 4 ⋅ 3.14 ⋅ 8.85 ⋅ 1 0 − 12 1 ⋅ 0.0 4 2 2 ⋅ 1 0 − 6 = 11.25 ⋅ 1 0 6 V / m
∣ E → 2 ∣ = 1 4 π ϵ 0 ⋅ q ( r ⋅ sin 60 ° ) 2 = 1 4 ⋅ 3.14 ⋅ 8.85 ⋅ 1 0 − 12 ⋅ 2 ⋅ 1 0 − 6 ( 0.04 ⋅ sin 60 ° ) 2 = 15 ⋅ 1 0 6 V / m \lvert \overrightarrow{E}_2\rvert=\frac{1}{4\pi\epsilon_0}\cdot \frac{q}{(r\cdot \sin60°)^2}=\frac{1}{4\cdot 3.14\cdot 8.85\cdot 10^{-12}}\cdot \frac{2\cdot10^{-6}}{(0.04\cdot \sin60°)^2}=15\cdot 10^6V/m ∣ E 2 ∣ = 4 π ϵ 0 1 ⋅ ( r ⋅ s i n 60° ) 2 q = 4 ⋅ 3.14 ⋅ 8.85 ⋅ 1 0 − 12 1 ⋅ ( 0.04 ⋅ s i n 60° ) 2 2 ⋅ 1 0 − 6 = 15 ⋅ 1 0 6 V / m
E → 123 = E → 1 + E → 2 + E → 3 \overrightarrow{E}_{123}=\overrightarrow{E}_1+\overrightarrow{E}_2+\overrightarrow{E}_3 E 123 = E 1 + E 2 + E 3
E → 1 + E → 3 = E → 13 \overrightarrow{E}_1+\overrightarrow{E}_3=\overrightarrow{E}_{13} E 1 + E 3 = E 13
∣ E → 13 ∣ = 2 E cos 60 ° = E = 11.25 ⋅ 1 0 6 V / m \lvert \overrightarrow{E}_{13}\rvert=2E\cos60°=E=11.25\cdot 10^6V/m ∣ E 13 ∣ = 2 E cos 60° = E = 11.25 ⋅ 1 0 6 V / m
∣ E → 123 ∣ = ( 11.25 ⋅ 1 0 6 ) 2 + ( 15 ⋅ 1 0 6 ) 2 = 18.75 ⋅ 1 0 6 V / m \lvert\overrightarrow{E}_{123}\rvert=\sqrt{(11.25\cdot 10^6)^2+(15\cdot 10^6)^2}=18.75\cdot 10^6V/m ∣ E 123 ∣ = ( 11.25 ⋅ 1 0 6 ) 2 + ( 15 ⋅ 1 0 6 ) 2 = 18.75 ⋅ 1 0 6 V / m Answer
tan α = 11.25 15 = 0.75 → α = 36.87 ° \tan\alpha=\frac{11.25}{15}=0.75\to \alpha=36.87° tan α = 15 11.25 = 0.75 → α = 36.87° Answer
Comments