Question #104640
Consider q1=q2=-q3=2 micro coulomb.APC is an equilateral triangle of side 4cm,B is the middle point of AC.q1, q2 and q3 are situated at the points A, B, C respectively. Determine the magnitude and direction of the electric field at point P.
1
Expert's answer
2020-03-06T10:25:00-0500

q1=q2=q3=q\lvert q_1\rvert=\lvert q_2\rvert=\lvert q_3\rvert=q


r=4cmr=4cm


E1=E3=E=14πϵ0qr2=143.148.85101221060.042=11.25106V/m\lvert \overrightarrow{E}_1\rvert=\lvert \overrightarrow{E}_3\rvert=E=\frac{1}{4\pi\epsilon_0}\cdot \frac{q}{r^2}=\frac{1}{4\cdot 3.14\cdot 8.85\cdot 10^{-12}}\cdot \frac{2\cdot10^{-6}}{0.04^2}=11.25\cdot 10^6V/m


E2=14πϵ0q(rsin60°)2=143.148.8510122106(0.04sin60°)2=15106V/m\lvert \overrightarrow{E}_2\rvert=\frac{1}{4\pi\epsilon_0}\cdot \frac{q}{(r\cdot \sin60°)^2}=\frac{1}{4\cdot 3.14\cdot 8.85\cdot 10^{-12}}\cdot \frac{2\cdot10^{-6}}{(0.04\cdot \sin60°)^2}=15\cdot 10^6V/m


E123=E1+E2+E3\overrightarrow{E}_{123}=\overrightarrow{E}_1+\overrightarrow{E}_2+\overrightarrow{E}_3


E1+E3=E13\overrightarrow{E}_1+\overrightarrow{E}_3=\overrightarrow{E}_{13}


E13=2Ecos60°=E=11.25106V/m\lvert \overrightarrow{E}_{13}\rvert=2E\cos60°=E=11.25\cdot 10^6V/m



E123=(11.25106)2+(15106)2=18.75106V/m\lvert\overrightarrow{E}_{123}\rvert=\sqrt{(11.25\cdot 10^6)^2+(15\cdot 10^6)^2}=18.75\cdot 10^6V/m Answer


tanα=11.2515=0.75α=36.87°\tan\alpha=\frac{11.25}{15}=0.75\to \alpha=36.87° Answer













Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS