1. Magnetic flux through a flat coil "\\Phi = B A \\cos\\alpha" ,
where:
"\\quad B \\text{ - flux density, T} \\\\\n\n\\quad A = w * h \\text{ - area of the coil, }m^2 \\\\\n\n\\quad \\alpha \\text{ - angle between the magnetic induction vector } \\\\\n\\text{ and the normal to the plane of the coil } \\\\\n\\quad w, h \\text{ - width and height of the coil, m }"
1.a The maximum flux through the coil occurs when the plane of the coil is perpendicular to the magnetic field.
"\\quad \\Phi_{max} = 0.05 * 0.2 * 0.1 * \\cos 0 = 10^{-3} \\text{ (Wb)}"
1.b
"\\quad \\Phi_{45^\\circ} = 0.05 * 0.2 * 0.1 * \\cos {45^\\circ} \\approx 7.07 * 10^{-4} \\text{ (Wb)}"
2. Will use Ohm's law "I = \\cfrac V R"
2.a Current in each branch of the network
"\\quad I_{6\\Omega} = 9 \/ 6 = 1.5 \\text{ (A)} \\\\\n\\quad I_{9\\Omega} = 9 \/ 9 = 1 \\text{ (A)} \\\\\n\\quad I_{15\\Omega} = 9 \/ 15 = 0.6 \\text{ (A)}"
2.b Supply current
"\\quad I_\\Sigma = I_{6\\Omega} + I_{9\\Omega} + I_{15\\Omega} = 1.5 + 1 + 0.6 = 3.1 \\text{ (A)}"
2.c Total effective resistance of the network
"\\quad R_\\Sigma = \\cfrac V I_\\Sigma = 9 \/ 3.1 \\approx 2.9 \\text{ (Ohm)}"
Comments
Leave a comment