a)Using the Hooke's law "\\left| {\\vec F} \\right| = k\\Delta l" where "\\Delta l" is the displacement from the equilibrium and "k" is the force constant of the spring and gravitational force "\\left| {\\vec F} \\right| = mg" we get
"mg = k\\Delta l" Write this equation for the first and the second case we get (we shall use "g \\approx 10[\\frac{{\\text{m}}}{{{{\\text{s}}^{\\text{2}}}}}]" )
"\\begin{cases}1[{\\text{kg}}] \\cdot 10[\\frac{{\\text{m}}}{{{{\\text{s}}^{\\text{2}}}}}] = k \\cdot X[{\\text{m}}] \\\\ (1 + 9 \\cdot {10^{ - 3}})[{\\text{kg}}] \\cdot 10[\\frac{{\\text{m}}}{{{{\\text{s}}^{\\text{2}}}}}] = k \\cdot (X + {10^{ - 1}})[{\\text{m}}]\\end{cases}" Substract the first from the second we get
"9 \\cdot {10^{ - 3}}[{\\text{kg}}] \\cdot 10[\\frac{{\\text{m}}}{{{{\\text{s}}^{\\text{2}}}}}] = k \\cdot {10^{ - 1}}[{\\text{m}}]" Thus
"k = 0.9[\\frac{{{\\text{kg}}}}{{{{\\text{s}}^{\\text{2}}}}}]" b)The angular frequency in SHM has the form
"\\omega = \\sqrt {\\frac{k}{m}}" Thus
"\\frac{{{\\omega _2}}}{{{\\omega _1}}} = \\frac{{\\sqrt {\\frac{k}{{{m_2}}}} }}{{\\sqrt {\\frac{k}{{{m_1}}}} }} = \\sqrt {\\frac{{{m_1}}}{{{m_2}}}} = \\sqrt {\\frac{1}{{1 + 9 \\cdot {{10}^{ - 3}}}}} = \\sqrt {\\frac{{1000}}{{1009}}} \\approx 0.9955"
Comments
Leave a comment