Question #96540
How do you say a vehicle of mass 3000 0 0 moving with a velocity of 15 m per second at the degree of 90° right with another vehicle of mass 400000 m moving with a velocity of 12 metre per second at a degree of 120 degree calculate the magnitude and direction of the common velocity with which the velocity begins to move immediately after
1
Expert's answer
2019-10-16T09:20:35-0400

From the conservation of momentum:


m1v1+m2v2=(m1+m2)vm_1\bold{v_1}+m_2\bold{v_2}=(m_1+m_2)\bold{v}

m1v1=3000(0,15)=(0,45000)kgmsm_1\bold{v_1}=3000(0,15)=(0,45000)\frac{kgm}{s}

m2v2=4000(12cos120,12sin120)=(24000,41569)kgmsm_2\bold{v_2}=4000(12\cos{120},12\sin{120})=(-24000,41569)\frac{kgm}{s}

vx=240003000+4000=3.43msv_x=\frac{-24000}{3000+4000}=-3.43\frac{m}{s}

vy=45000+415693000+4000=12.37msv_y=\frac{45000+41569}{3000+4000}=12.37\frac{m}{s}

The magnitude:


v=(3.43)2+12.372=12.8msv=\sqrt{(-3.43)^2+12.37^2}=12.8\frac{m}{s}

The direction:


θ=180°arctan12.373.43=105.5°\theta=180\degree-\arctan{\frac{12.37}{3.43}}=105.5\degree


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS