Question #91705
The position of a particle which is constrained to move along a straight line is given by
x = 3t3 − 7t + 9 , where x is the position measured in metres from an origin and t is in seconds. Determine the acceleration of the particle when its velocity is 26 m/s.
1
Expert's answer
2019-07-22T11:33:47-0400

Position of particle is given by function

X=3t37t+9X=3t^3-7t+9


D.w.t of position function gives velocity function

V=dXdt=9t27V=\frac{dX}{dt}=9t^2-7 ------------------------(1)

But Velocity is given as V=26 m/s

26=9t2726=9t^2-7

t2=33/9

t=1.91sec

Now differentiate again the velocity function equation (1) with respect to t, we get acceleration function

A=dVdt=18tA=\frac{dV}{dt}=18t

A=18x1.91

A=34.38m/s2






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS