Newton's second law:
"\\frac{GMm}{(R+h)^2} = ma\\\\\na= \\frac{GM}{(R+h)^2}\\\\\na= \\frac{v^2}{(R+h)}\\\\\nv=\\frac{2\\pi (R+h)}{T}\\\\\na=\\frac{4 \\pi^2 (R+h)}{T^2}\\\\\n\\frac{4 \\pi^2 (R+h)}{T^2}=\\frac{GM}{(R+h)^2}\\\\"and then the mass of Earth is
"M=\\frac{4 \\pi^2 (R+h)^3}{GT^2}=\\\\\n=\\frac{4\\pi^2 ((6371+230)\\cdot 10^3)^3}{6,67\\cdot 10^{-11}\\cdot (89\\cdot 60)^2} = 5.97\\cdot 10^{24} kg"
Comments
Leave a comment