2nd Newtons law:
"ma = -kx-yv \\Rightarrow m\\ddot{x}+y\\dot{x}+kx=0" Characteristic equation:
"m\\lambda^2+y\\lambda+k=0 \\rightarrow \\lambda = \\frac{-y\\pm i\\sqrt{4 k m - y^2}}{2 m}" Therefore, natural frequency
"\\omega = \\frac{\\sqrt{4 k m - y^2}}{2 m}=\\sqrt{ \\frac{k}{m} - \\frac{y^2}{4m^2}} = 54.5436\\, \\text{s}^{-1}" Assume external force with amplitude A and frequency "\\Omega". 2nd Newtons law takes the form
"m\\ddot{x}+y\\dot{x}+kx=A\\sin{\\Omega t}" Solution:
"x(t)=A\\frac{ \\sin (t \\Omega +\\phi )}{\\sqrt{(k-m\\Omega^2)^2 + y^2\\Omega^2}}+\\text{homogeneous eq. solution}" Resonance occurs at
"\\Omega = \\sqrt{k\/m}=60\\, \\text{s}^{-1}" Resonance frequency greater than natural freq. and doesn't depend on damping constant.
Comments
Leave a comment