The instantaneous potential energy of a simple harmonic oscillator
PE(t)=(kx^2 (t))/2
The displacement
x(t)=a cosωt=a cos^2〖2π/T t〗
The average potential energy
(PE) ̅=1/T ∫_0^T▒PE(t)dt=(ka^2)/2T ∫_0^T▒〖cos^2〖2π/T〗 t〗 dt=
=(ka^2)/4T ∫_0^T▒(1+cos〖4π/T〗 t) dt=(ka^2)/4=(200×〖0.05〗^2)/4=0.125 J
Comments
Leave a comment