Take the frame of reference at a fixed helium nucleus \text{Take the frame of reference at a fixed helium nucleus} Take the frame of reference at a fixed helium nucleus
m 1 − helium atom m_1 - \text{helium atom } m 1 − helium atom
m 2 − electron m_2 - \text{electron} m 2 − electron
v 1 = 0 v_1 = 0 v 1 = 0
E K = m 2 v 2 2 2 EK = \frac{m_2v_2^2}{2} E K = 2 m 2 v 2 2
m 2 v 2 ⃗ = m 1 u 1 ⃗ + m 2 u 2 ⃗ m_2\vec{v_2}=m_1\vec{u_1} +m_2\vec{u_2} m 2 v 2 = m 1 u 1 + m 2 u 2
m 1 u 1 ⃗ = m 2 v 2 ⃗ − m 2 u 2 ⃗ m_1\vec{u_1} = m_2\vec{v_2}-m_2\vec{u_2} m 1 u 1 = m 2 v 2 − m 2 u 2
m a x ( u ⃗ 1 ) = 2 v ⃗ 2 m 2 m 1 max (\vec u_{1})= \frac{2\vec v_2m_2}{m_1} ma x ( u 1 ) = m 1 2 v 2 m 2
Δ E K m 1 = m 1 u 1 2 2 \Delta EK_{m_1}= \frac{m_1u_1^2}{2} Δ E K m 1 = 2 m 1 u 1 2
m a x ( Δ E K m 1 ) = 2 m 2 2 v 2 2 m 1 max(\Delta EK_{m_1})= \frac{2m_2^2v_2^2}{m_1} ma x ( Δ E K m 1 ) = m 1 2 m 2 2 v 2 2
maxpercentage = m a x ( Δ E K m 1 ) E K ∗ 100 = 4 m 2 m 1 ∗ 100 \text{maxpercentage}= \frac{max(\Delta EK_{m_1})}{EK}*100= \frac{4m_2}{m_1}*100 maxpercentage = E K ma x ( Δ E K m 1 ) ∗ 100 = m 1 4 m 2 ∗ 100
The helium nucleus - is made up of two protons and two neutrons. \text{The helium nucleus - is made up of two protons and two neutrons.} The helium nucleus - is made up of two protons and two neutrons.
The mass of a proton is 1836 heavier than the mass of an electron \text{The mass of a proton is 1836 heavier than the mass of an electron} The mass of a proton is 1836 heavier than the mass of an electron
maxpercentage = = 4 m 2 4 ∗ 1836 ∗ m 2 ∗ 100 = 0.054 % \text{maxpercentage}= = \frac{4m_2}{4*1836*m_2}*100= 0.054 \% maxpercentage == 4 ∗ 1836 ∗ m 2 4 m 2 ∗ 100 = 0.054%
maxpercentage < 0.1 % \text{maxpercentage}<0.1 \% maxpercentage < 0.1%
Proven \text{Proven} Proven
Comments