x = b sin θ , y = 1 2 a t 2 − b cos θ , x=b\sin\theta,~y=\frac 12at^2-b\cos \theta, x = b sin θ , y = 2 1 a t 2 − b cos θ ,
x ˙ = b θ ˙ cos θ , y ˙ = a t + b θ ˙ sin θ , \dot x=b\dot {\theta}\cos \theta,~\dot y=at+b\dot{\theta}\sin \theta, x ˙ = b θ ˙ cos θ , y ˙ = a t + b θ ˙ sin θ ,
T = 1 2 m ( x ˙ 2 + y ˙ 2 ) = 1 2 m ( b θ ˙ 2 + a 2 t 2 + 2 a b t θ ˙ 2 sin θ ) , T=\frac 12m(\dot x^2+\dot y^2)=\frac 12 m(b\dot{\theta}^2+a^2t^2+2abt\dot{\theta}^2\sin \theta), T = 2 1 m ( x ˙ 2 + y ˙ 2 ) = 2 1 m ( b θ ˙ 2 + a 2 t 2 + 2 ab t θ ˙ 2 sin θ ) ,
L = T − m g y , ⟹ L=T-mgy,\implies L = T − m g y , ⟹
d d t ( m b 2 θ ˙ 2 + m a b t sin θ ) = m a b t θ ˙ cos θ − m g b sin θ ) , \frac d{dt}(mb^2\dot {\theta}^2+mabt\sin \theta)=mabt\dot \theta\cos \theta-mgb\sin\theta), d t d ( m b 2 θ ˙ 2 + mab t sin θ ) = mab t θ ˙ cos θ − m g b sin θ ) ,
b 2 θ ¨ + a b sin θ + a b t θ ˙ cos θ = a b t θ ˙ cos θ − g b sin θ , b^2\ddot \theta+ab\sin \theta+abt\dot \theta\cos \theta=abt\dot \theta\cos \theta-gb\sin \theta, b 2 θ ¨ + ab sin θ + ab t θ ˙ cos θ = ab t θ ˙ cos θ − g b sin θ ,
θ ¨ + a + g b sin θ = 0 , \ddot \theta+\frac{a+g}b\sin \theta=0, θ ¨ + b a + g sin θ = 0 , sin θ = θ , \sin \theta=\theta, sin θ = θ ,
θ ¨ + a + g b θ = 0 , \ddot \theta+\frac{a+g}b\theta=0, θ ¨ + b a + g θ = 0 ,
θ ¨ + ω 2 θ = 0 , ⟹ \ddot \theta+\omega^2 \theta=0,\implies θ ¨ + ω 2 θ = 0 , ⟹
T = 2 π ω = 2 π b a + g . T=\frac{2\pi}{\omega}=2\pi\sqrt{\frac b{a+g}}. T = ω 2 π = 2 π a + g b .
Comments