Question #267892

A pendulum of mass m and length b is attached to a massless support initially at rest and then moving with vertically upward acceleration a

( a) Determine the Lagrangian

( b) Find the equation of motion of the pendulum

Refer to the figure below


1
Expert's answer
2021-11-21T17:24:21-0500

x=bsinθ, y=12at2bcosθ,x=b\sin\theta,~y=\frac 12at^2-b\cos \theta,

x˙=bθ˙cosθ, y˙=at+bθ˙sinθ,\dot x=b\dot {\theta}\cos \theta,~\dot y=at+b\dot{\theta}\sin \theta,

T=12m(x˙2+y˙2)=12m(bθ˙2+a2t2+2abtθ˙2sinθ),T=\frac 12m(\dot x^2+\dot y^2)=\frac 12 m(b\dot{\theta}^2+a^2t^2+2abt\dot{\theta}^2\sin \theta),

L=Tmgy,    L=T-mgy,\implies

ddt(mb2θ˙2+mabtsinθ)=mabtθ˙cosθmgbsinθ),\frac d{dt}(mb^2\dot {\theta}^2+mabt\sin \theta)=mabt\dot \theta\cos \theta-mgb\sin\theta),

b2θ¨+absinθ+abtθ˙cosθ=abtθ˙cosθgbsinθ,b^2\ddot \theta+ab\sin \theta+abt\dot \theta\cos \theta=abt\dot \theta\cos \theta-gb\sin \theta,

θ¨+a+gbsinθ=0,\ddot \theta+\frac{a+g}b\sin \theta=0, sinθ=θ,\sin \theta=\theta,

θ¨+a+gbθ=0,\ddot \theta+\frac{a+g}b\theta=0,

θ¨+ω2θ=0,    \ddot \theta+\omega^2 \theta=0,\implies

T=2πω=2πba+g.T=\frac{2\pi}{\omega}=2\pi\sqrt{\frac b{a+g}}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS