S 1 = 2 m , ∠ α = 40 ° S_1 = 2m,\angle\alpha = 40\degree S 1 = 2 m , ∠ α = 40°
S 1 x = S 1 ∗ cos α = 2 ∗ cos 40 ° = 1.53 m S_{1x}= S_1*\cos \alpha=2*\cos40\degree= 1.53m S 1 x = S 1 ∗ cos α = 2 ∗ cos 40° = 1.53 m
S 1 y = S 1 ∗ sin α = 2 ∗ sin 40 ° = 1.29 m S_{1y}= S_1*\sin \alpha = 2*\sin40\degree=1.29 m S 1 y = S 1 ∗ sin α = 2 ∗ sin 40° = 1.29 m
S 2 = 4 m , ∠ β = 120 ° S_2 = 4m,\angle\beta= 120\degree S 2 = 4 m , ∠ β = 120°
S 2 x = S 2 ∗ cos β = 4 ∗ cos 120 ° = − 2 m S_{2x}= S_2*\cos \beta=4*\cos120\degree= -2m S 2 x = S 2 ∗ cos β = 4 ∗ cos 120° = − 2 m
S 2 y = S 2 ∗ sin β = 4 ∗ sin 120 ° = 3.46 m S_{2y}= S_2*\sin \beta=4*\sin120\degree= 3.46m S 2 y = S 2 ∗ sin β = 4 ∗ sin 120° = 3.46 m
S x = S 1 x + S 2 x = 1.53 − 2 = − 0.47 m S_x = S_{1x}+ S_{2x}= 1.53-2=-0.47m S x = S 1 x + S 2 x = 1.53 − 2 = − 0.47 m
S y = S 1 y + S 2 y = 1.29 + 3.46 = 4.75 m S_y = S_{1y}+ S_{2y}= 1.29+3.46=4.75m S y = S 1 y + S 2 y = 1.29 + 3.46 = 4.75 m
S = S x 2 + S y 2 = − 0.4 7 2 + 4.7 5 2 = 4.77 m S = \sqrt{S_x^2+S_y^2}=\sqrt{-0.47^2+4.75^2}=4.77m S = S x 2 + S y 2 = − 0.4 7 2 + 4.7 5 2 = 4.77 m
cos γ = S x S = − 0.47 4.77 = − 0.09853 \cos\gamma=\frac{Sx}{S}=\frac{-0.47}{4.77}= -0.09853 cos γ = S S x = 4.77 − 0.47 = − 0.09853
γ = arccos ( − 0.09853 ) ≈ 95 ° \gamma=\arccos(-0.09853)\approx95\degree γ = arccos ( − 0.09853 ) ≈ 95°
Answer: 4.77 m ; angle 95 ° \text{Answer: }4.77m ;\text{angle }95\degree Answer: 4.77 m ; angle 95°
Comments