Question #241219

show that the set of all continues function in the interval of [-1,1], c^0([-1,1]) is a vector space


1
Expert's answer
2021-09-24T09:26:20-0400

fC0f \in C^0

f:[0,1][0,1]f:[0,1]\to[0,1]

fC0 by the condition of the problem \forall f\in C^0 \text{ by the condition of the problem }

f is continues functionf \text{ is continues function}

By the properties of continuous functions:\text{By the properties of continuous functions:}

Sum and scalar multiples of continuous functions are also \text{Sum and scalar multiples of continuous functions are also }

continuous (and addition is commutative).\text{continuous (and addition is commutative)}.

0C0;f+0=f0 \in C^0; f+0 =f

That is, C0 fully supports the axiomatics of the vector space\text{That is, }C^0 \text{ fully supports the axiomatics of the vector space}

Hence C0is a vector space of continuous functions\text{Hence }C^0 \text{is a vector space of continuous functions}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS