Question #237968

Q8. Calculate the divergence and Curl, of the following functions

a. V= x2 i+3xy^2 j -2xyz k

b. V=xyi+2yz j+3zx k

c. V= y2i +(2xy+z2)j+ 2yz k , where i , j , k are unit vectors along x, y and z axis


1
Expert's answer
2021-09-18T15:00:23-0400
divV=Vxx+Vyy+Vzz{\rm div}{\bf V}=\frac{\partial V_x}{\partial x}+\frac{\partial V_y }{\partial y}+\frac{\partial V_z}{\partial z}

curlV=i^j^k^xyzVxVyVz\rm curl\:{\bf V}=\begin{vmatrix} \hat i & \hat j &\hat k\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ V_x&V_y&V_z \end{vmatrix}


(a)

divV=(x2)x+(3xy2)y+(2xyz)z=2x+6xy2xy=2x+4xy{\rm div}{\bf V}=\frac{\partial (x^2)}{\partial x}+\frac{\partial (3xy^2) }{\partial y}+\frac{\partial (-2xyz)}{\partial z}\\=2x+6xy-2xy=2x+4xy

curlV=i^j^k^xyzx23xy22xyz{\rm curl\:{\bf V}}=\begin{vmatrix} \hat i & \hat j &\hat k\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2&3xy^2&-2xyz \end{vmatrix}=2xyi^+2yzj^+3xk^=-2xy\hat i+2yz\hat j+3x\hat k

(b)

divV=(xy)x+(2yz)y+(3zx)z=y+2z+3x{\rm div}{\bf V}=\frac{\partial (xy)}{\partial x}+\frac{\partial (2yz) }{\partial y}+\frac{\partial (3zx)}{\partial z}\\=y+2z+3x

curlV=i^j^k^xyzxy2yz3zx{\rm curl\:{\bf V}}=\begin{vmatrix} \hat i & \hat j &\hat k\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xy&2yz&3zx \end{vmatrix}

=2yi^3zj^xk^=-2y\hat i-3z\hat j-x\hat k

(c)

divV=(y2)x+(2xy+z2)y+(2yz)z=2x+2y{\rm div}{\bf V}=\frac{\partial (y^2)}{\partial x}+\frac{\partial (2xy+z^2) }{\partial y}+\frac{\partial (2yz)}{\partial z}\\=2x+2y

curlV=i^j^k^xyzy22xy+z22yz{\rm curl\:{\bf V}}=\begin{vmatrix} \hat i & \hat j &\hat k\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2&2xy+z^2&2yz \end{vmatrix}

=0i^+0j^+0k^=0=0\hat i+0\hat j+0\hat k=\bf 0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS