let N ⃗ ( 0 , 1 ) − unit vector north \text {let }\vec{N}(0,1)- \text{unit vector north} let N ( 0 , 1 ) − unit vector north
let E ⃗ ( 1 , 0 ) − unit vector east \text {let }\vec{E}(1,0)- \text{unit vector east} let E ( 1 , 0 ) − unit vector east
N ⃗ ⊥ E ⃗ \vec N\perp \vec E N ⊥ E
Am aircraft flies 800km due east and then 600km due north. \text{Am aircraft flies 800km due east and then 600km due north.} Am aircraft flies 800km due east and then 600km due north.
D ⃗ = 800 ∗ E ⃗ + 600 ∗ N ⃗ \vec D= 800*\vec E+600*\vec N D = 800 ∗ E + 600 ∗ N
D ⃗ = ( 800 , 0 ) + ( 0 , 600 ) = ( 800 , 600 ) \vec D= (800,0)+(0,600)=(800,600) D = ( 800 , 0 ) + ( 0 , 600 ) = ( 800 , 600 )
∣ D ⃗ ∣ = 60 0 2 + 80 0 2 = 1000 k m |\vec D|=\sqrt{600^2+800^2}=1000km ∣ D ∣ = 60 0 2 + 80 0 2 = 1000 km
Answer: 1000 k m \text{Answer:}1000km Answer: 1000 km
Comments
Correct