Question #227013
A train moves 3.6km from rest to rest in 3 minutes. The greatest speed is 90km/h, and the acceleration and retardation are uniform. Find the distance traveled at full speed.
1
Expert's answer
2021-08-18T11:08:36-0400

Given,

Distance (d)= 3.6 km

(d)=3.6×1000m=3600m(d)= 3.6\times 1000 m = 3600m

Time (t)=3min=3×60=180s(t) = 3min = 3\times 60 = 180s

greatest speed (v)=90km/h=90×100060×60m/s(v)=90 km/h = 90\times \frac{1000}{60\times 60} m/s

(v)=15×106m/s=25m/s\Rightarrow (v)=\frac{15\times 10}{6}m/s = 25 m/s

initial speed (u)=0(u) = 0, let the acceleration of the train be a, and time during the acceleration be t1t_1 and time for the de-acceleration be t2t_2

Motion during acceleration,

v=u+at1\Rightarrow v=u+at_1

25=at1\Rightarrow 25=at_1

t1=25a\Rightarrow t_1 = \frac{25}{a}

d1=at122=6252ad_1 = \frac{at_1^2}{2}=\frac{625}{2a}

motion during de-acceleration,

vf=vat2\Rightarrow v_f=v-at_2

Now, substituting the values,

0=25at2\Rightarrow 0=25-at_2

at2=25\Rightarrow at_2 = 25

t2=25a\Rightarrow t_2=\frac{25}{a}

vf2=v22ad2v_f^2=v^2-2ad_2

0=2522ad2\Rightarrow 0= 25^2-2ad_2

d2=6252a\Rightarrow d_2=\frac{625}{2a}

Time, during which train traveled with constant velocity,

d3=25t3d_3 = 25t_3

given that,t1+t2+t3=180st_1+t_2+t_3 = 180s


t3=180(t1+t2)\Rightarrow t_3= 180-(t_1+t_2)


so, d3=(180(t1+t2))×25d_3=(180-(t_1+t_2))\times 25


d3=(180(25a+25a))×25\Rightarrow d_3 = (180-(\frac{25}{a}+\frac{25}{a}))\times 25


d3=(18050a)×25\Rightarrow d_3= (180- \frac{50}{a})\times 25


Now, d1+d2+d3=3600md_1+d_2+d_3 = 3600m


6252a+6252a+(18050a)×25=3600m\Rightarrow \frac{625}{2a}+\frac{625}{2a}+(180-\frac{50}{a})\times 25 = 3600m


12502a+45001250a=3600\Rightarrow \frac{1250}{2a}+4500-\frac{1250}{a}=3600


1250a12502a=45003600\Rightarrow \frac{1250}{a}-\frac{1250}{2a}=4500-3600


12502a=900\Rightarrow \frac{1250}{2a}=900


a=12501800=0.7m/s2\Rightarrow a =\frac{1250}{1800}=0.7m/s^2


now, t1=t2=500.7t_1=t_2 = \frac{50}{0.7} sec


t1=t2=71.42sec\Rightarrow t_1=t_2 = 71.42 sec


now d3=(18071.4271.42)×25d_3 = (180-71.42-71.42)\times 25

d3=929m\Rightarrow d_3 = 929m

Hence, the distance traveled with full speed is 929m929m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS