The Newton's second law says
"m{\\bf a}={\\bf F}""m{\\ddot x}=0,\\\\\nm{\\ddot y}=-mg."
Equations of motion:
"{\\ddot x}=0,\\quad {\\dot x}(0)=v_0,\\quad x(0)=0,\\\\{\\ddot y}=-g,\\quad {\\dot y}(0)=0,\\quad y(0)=h."Solutions:
"x(t)=v_0t,\\\\\ny(t)=h-\\frac{gt^2}{2}"2. The lagrangian of the system
"L=T-V=\\frac{m({\\dot x}^2+{\\dot y}^2)}{2}-mgy"The Euler-Lagrange equations
"\\frac{d}{dt}\\left(\\frac{\\partial L}{\\partial {\\dot x}}\\right)-\\frac{\\partial L}{\\partial {x}}=0,\\\\\\frac{d}{dt}\\left(\\frac{\\partial L}{\\partial {\\dot y}}\\right)-\\frac{\\partial L}{\\partial {y}}=0,"give
"m{\\ddot x}=0,\\\\\nm{\\ddot y}=-mg."
Comments
Thank you so much .Am very grateful
Leave a comment