Derive and solve the equation of motion of a particle, in a uniform gravita-
tional field, projected with initial horizontal velocity v 0 at a height h.
vx=v0cosα,v_x=v_0\cos \alpha,vx=v0cosα,
vy=v0sinα−gt,v_y=v_0\sin \alpha-gt,vy=v0sinα−gt,
x=v0cosαt,x=v_0\cos\alpha t,x=v0cosαt,
y=y0+v0sinαt−gt22,y=y_0+v_0\sin\alpha t-\frac{gt^2}2,y=y0+v0sinαt−2gt2,
y(x)=y0+tanαx−gx22v02cos2α,y(x)=y_0+\tan\alpha x-\frac{gx^2}{2v_0^2\cos^2\alpha},y(x)=y0+tanαx−2v02cos2αgx2,
α=0,\alpha=0,α=0,
y0=h,y_0=h,y0=h,
y(x)=h−gx22v02.y(x)=h-\frac{gx^2}{2v_0^2}.y(x)=h−2v02gx2.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments