Question #222690

A mass of 0.4kg is rotated by a string at constant speed v in a vertical circle. R=1m. If the minimum tension is 3N. Calculate

a) v

b) maximum tension when string is horizontal


1
Expert's answer
2021-08-03T11:41:14-0400

m=0.4kg;R=1m;Tmin=3Nm =0.4kg;R = 1m;T_{min}= 3N

g=9.8mS2\vec g = 9.8\frac{m}{S^2}

F=ma\vec F = m\vec a

a=v2R=v2 etc. R=1\vec a = \frac{v^2}{R}= v^2\text{ etc. }R=1

F=Fg+T\vec F=\vec F_g+\vec{T}

Fg=mg\vec F_g = m\vec g

T=FFg=m(ag)\vec T= \vec F- \vec F_g= m(\vec a- \vec g)

Tmin=m(ag)T_{min} = m (a-g)

a=Tminm+g=30.4+9.8=17.3ms2a = \frac{T_{min}}{m}+g= \frac{3}{0.4}+9.8=17.3\frac{m}{s^2}


a)a=v2Ra) a = \frac{v^2}{R}

v=aR=17.31=4.16msv= \sqrt{aR}= \sqrt{17.3*1}=4.16\frac{m}{s}


b) maximum tension when string is horizontalb)\text{ maximum tension when string is horizontal}

F=Fg+T\vec F=\vec F_g+\vec{T}

Projection of forces on the horizontal axis:\text{Projection of forces on the horizontal axis:}

Fx=TF_x=T

T=F=ma=0.417.3=6.92NT = |\vec F|= ma= 0.4*17.3= 6.92N


Answer: a)v=4.16ms;b)T=6.92N\text{Answer: }a)v=4.16\frac{m}{s};b)T = 6.92 N


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS