m = 0.4 k g ; R = 1 m ; T m i n = 3 N m =0.4kg;R = 1m;T_{min}= 3N m = 0.4 k g ; R = 1 m ; T min = 3 N
g ⃗ = 9.8 m S 2 \vec g = 9.8\frac{m}{S^2} g = 9.8 S 2 m
F ⃗ = m a ⃗ \vec F = m\vec a F = m a
a ⃗ = v 2 R = v 2 etc. R = 1 \vec a = \frac{v^2}{R}= v^2\text{ etc. }R=1 a = R v 2 = v 2 etc. R = 1
F ⃗ = F ⃗ g + T ⃗ \vec F=\vec F_g+\vec{T} F = F g + T
F ⃗ g = m g ⃗ \vec F_g = m\vec g F g = m g
T ⃗ = F ⃗ − F ⃗ g = m ( a ⃗ − g ⃗ ) \vec T= \vec F- \vec F_g= m(\vec a- \vec g) T = F − F g = m ( a − g )
T m i n = m ( a − g ) T_{min} = m (a-g) T min = m ( a − g )
a = T m i n m + g = 3 0.4 + 9.8 = 17.3 m s 2 a = \frac{T_{min}}{m}+g= \frac{3}{0.4}+9.8=17.3\frac{m}{s^2} a = m T min + g = 0.4 3 + 9.8 = 17.3 s 2 m
a ) a = v 2 R a) a = \frac{v^2}{R} a ) a = R v 2
v = a R = 17.3 ∗ 1 = 4.16 m s v= \sqrt{aR}= \sqrt{17.3*1}=4.16\frac{m}{s} v = a R = 17.3 ∗ 1 = 4.16 s m
b ) maximum tension when string is horizontal b)\text{ maximum tension when string is horizontal} b ) maximum tension when string is horizontal
F ⃗ = F ⃗ g + T ⃗ \vec F=\vec F_g+\vec{T} F = F g + T
Projection of forces on the horizontal axis: \text{Projection of forces on the horizontal axis:} Projection of forces on the horizontal axis:
F x = T F_x=T F x = T
T = ∣ F ⃗ ∣ = m a = 0.4 ∗ 17.3 = 6.92 N T = |\vec F|= ma= 0.4*17.3= 6.92N T = ∣ F ∣ = ma = 0.4 ∗ 17.3 = 6.92 N
Answer: a ) v = 4.16 m s ; b ) T = 6.92 N \text{Answer: }a)v=4.16\frac{m}{s};b)T = 6.92 N Answer: a ) v = 4.16 s m ; b ) T = 6.92 N
Comments