Question #217307

Use the information below to answer the following 2 questions.

A rubber-band slingshot is drawn back is drawn back 0.15 m with a force of 28 N and shoots a 28-g stone. Solve using energy considerations. Recall from the previous lesson that Ep = ½ kx2. Since F = kxEp = ½ Fx.


1)The initial speed of the stone if the rubber band is released is___m/s

2) The maximum height of the stone if it is shot straight up is ___m


Use the information below to answer the following 2 questions.

A 0.80-kg coconut is growing 10 m above the ground in its palm tree. The tree is just at the edge of a cliff that is 15 m tall.


1) The maximum speed of the coconut if it fell to the ground beneath the tree is ___m/s.

2) The maximum speed of the coconut if it fell from the tree to the bottom of the cliff is ___m/s




1
Expert's answer
2021-07-15T12:34:21-0400

1.1.

x=0.15mx = 0.15m

F=28NF = 28N

m=28g=0.028kgm= 28g= 0.028kg

g=9.8ms2g= 9.8\frac{m}{s^2}

E=Er+EsE= E_{r}+E{s}

Er,Esenergy of rubber-band slingshot and stoneE_{r},E{s}-\text{energy of rubber-band slingshot and stone}

before the shot:\text{before the shot:}

E=Epr+Ekr+Eps+EksE=E_{pr}+E_{kr}+E_{ps}+E_{ks}

energy of rubber-band slingshot\text{energy of rubber-band slingshot}

Ekr=0E_{kr }=0

Epr=12Fx=12280.15=2.1JE_{pr }=\frac{1}{2}Fx=\frac{1}{2}*28*0.15= 2.1 J

energy of stone\text{energy of stone}

Eks=0;Eps=0E_{ks}=0;E_{ps}=0

E=2.1JE= 2.1J

shot fired: \text{shot fired: }

E=Epr+Ekr+Eps+Eks=2.1JE=E_{pr}+E_{kr}+E_{ps}+E_{ks} = 2.1J

Epr=0;Ekr=0;E_{pr}=0;E_{kr}=0;

Eps=0;E_{ps}=0;

Eks=mv22E_{ks}= \frac{mv^2}{2}

mv22=E\frac{mv^2}{2}=E

v=2Em=22.10.028=12.25msv= \sqrt{\frac{2E}{m}}=\sqrt{\frac{2*2.1}{0.028}}=12.25\frac{m}{s}

the stone has reached its highest point:\text{the stone has reached its highest point:}

E=Epr+Ekr+Eps+EksE=E_{pr}+E_{kr}+E_{ps}+E_{ks}

Epr=0;Ekr=0E_{pr}=0;E_{kr}=0

Eps=mgh;Eks=0;E_{ps}= mgh;E_{ks}=0;

E=mghE = mgh

h=Emg=2.10.0289.8=7.65mh = \frac{E}{mg}= \frac{2.1}{0.028*9.8}=7.65m


Answer:\text{Answer:}

The initial speed of the stone if the rubber band is released is 12.25 m/s\text{The initial speed of the stone if the rubber band is released is 12.25 m/s}

The maximum height of the stone if it is shot straight up is 7.65 m\text{The maximum height of the stone if it is shot straight up is 7.65 m}


2.

Coconut falls from the tree:\text{Coconut falls from the tree:}

h=10mh = 10m

m=0.8kgm = 0.8 kg

E=Ep+EkE= E_p+E_k

Epmax=mgh=0.89.810=78.4JE_{pmax}= mgh=0.8*9.8*10= 78.4J

Epmax=EkmaxE_{pmax}= E_{kmax}

Ekmax=mv22E_{kmax}=\frac{mv^2}{2}

v=2Ekmaxm=278.40.8=14msv=\sqrt{\frac{2*E_{kmax}}{m}}=\sqrt{{\frac{2*78.4}{0.8}}}=14\frac{m}{s}

Coconut falls from tree and cliff:\text {Coconut falls from tree and cliff:}

h1=h+15=25mh_1 = h+15= 25m

E=Ep+EkE'= E'_p+E'_k

Epmax=mgh1=0.89.825=196JE'_{pmax}= mgh_1=0.8*9.8*25= 196J

Epmax=EkmaxE'_{pmax}= E'_{kmax}

Ekmax=mv122E'_{kmax}=\frac{mv_1^2}{2}

v1=2Ekmaxm=21960.8=22.16msv_1=\sqrt{\frac{2*E'_{kmax}}{m}}=\sqrt{{\frac{2*196}{0.8}}}=22.16\frac{m}{s}


Answer:\text{Answer:}

The maximum speed of the coconut if it fell to the ground \text{The maximum speed of the coconut if it fell to the ground }

beneath the tree is 14m/s.\text{beneath the tree is 14m/s.}

The maximum speed of the coconut if it fell from the tree\text{The maximum speed of the coconut if it fell from the tree}

to the bottom of the cliff is 22.16m/s\text{to the bottom of the cliff is 22.16m/s}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS