8. Find the law of motion of a particle in the field U(x)=-Cx^4 ,if it is Total energy is zero ( C is positive constant)
F=U′=−4cx3,F=U'=-4cx^3,F=U′=−4cx3,
F=Ux=−cx3,F=\frac Ux=-cx^3,F=xU=−cx3,
F=−5cx3,F=-5cx^3,F=−5cx3,
F=mx¨,F=m\ddot x,F=mx¨,
x¨=Fm=−5cx3m,\ddot x=\frac Fm=-\frac{5cx^3}{m},x¨=mF=−m5cx3,
x˙=−5cx44m,\dot x=-\frac{5cx^4}{4m},x˙=−4m5cx4,
x=−cx54m,x=-\frac{cx^5}{4m},x=−4mcx5,
(−cx54m)2−ω25cx3m=0,(-\frac{cx^5}{4m})^2-\omega^2\frac{5cx^3}{m}=0,(−4mcx5)2−ω2m5cx3=0,
cx7−80ω2m=0.cx^7-80\omega^2 m=0.cx7−80ω2m=0.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment