An element is first connected across an external resistance R1=2 Ω, and
then across an external resistance R2= 0.5 Ω. Find the e.m.f. of the
element and its internal resistance if in each of these cases the power
evolved in the external circuit is the same and equal to 2.54 W.
I=ER+rI= \frac{E}{R+r}I=R+rE
P=I2R=E2R(R+r)2P=I^2R= \frac{E^2R}{(R+r)^2}P=I2R=(R+r)2E2R
P1=E2∗2(2+r)2P_1=\frac{E^2*2}{(2+r)^2}P1=(2+r)2E2∗2
P2=E2∗0.5(0.5+r)2P_2=\frac{E^2*0.5}{(0.5+r)^2}P2=(0.5+r)2E2∗0.5
P1=P2=2.54P_1 = P_2=2.54P1=P2=2.54
E2∗2(2+r)2=E2∗0.5(0.5+r)2\frac{E^2*2}{(2+r)^2}=\frac{E^2*0.5}{(0.5+r)^2}(2+r)2E2∗2=(0.5+r)2E2∗0.5
4∗(0.5+r)2=(2+r)24*(0.5+r)^2=(2+r)^24∗(0.5+r)2=(2+r)2
2∗(0.5+r)=(2+r)2*(0.5+r)=(2+r)2∗(0.5+r)=(2+r)
r=1r=1r=1
P1=I12R1P_1=I_1^2R_1P1=I12R1
I1=P1R1=2.542=1.17I_1=\sqrt{\frac{P_1}{R_1}}=\sqrt{\frac{2.54}{2}}=1.17I1=R1P1=22.54=1.17
I1=ER1+rI_1= \frac{E}{R_1+r}I1=R1+rE
E=I1(R1+r)=1.17(2+1)=3.51E=I_1(R_1+r)=1.17(2+1)=3.51E=I1(R1+r)=1.17(2+1)=3.51
Answer: e.m.f=3.51V;r=1Ω\text{Answer: }e.m.f = 3.51V;r=1\OmegaAnswer: e.m.f=3.51V;r=1Ω
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment