Question #207355

 A particle of mass m moves according to laws x=A·cosωt and y=B·sinωt. Find the force acting on thisparticle in each point of its trajectory.


1
Expert's answer
2021-06-16T15:38:32-0400
r=acosωti+bsinωtjv=bωcosωtjaωsinωtia=ω2(acosωti+bsinωtj)=ω2rF=mω2(acosωti+bsinωtj)=mω2r\bold{r}=a \cos ωt\bold{i }+ b \sin ωt\bold{j}\\ \bold{v}=b\omega \cos ωt\bold{j }-a\omega \sin ωt\bold{i}\\ \bold{a}=-\omega^2(a \cos ωt\bold{i }+ b \sin ωt\bold{j})=-\omega^2\bold{r}\\ \bold{F}=-m\omega^2(a \cos ωt\bold{i }+ b \sin ωt\bold{j})=-m\omega^2\bold{r}\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS