m E = 6 ∗ 1 0 24 k g m_E = 6*10^{24}kg m E = 6 ∗ 1 0 24 k g
m s = 250 k g m_s =250kg m s = 250 k g
h = 250 k m = 25 ∗ 1 0 4 m h=250km=25*10^4m h = 250 km = 25 ∗ 1 0 4 m
r E = 6.38 ∗ 1 0 6 m r_E=6.38*10^6m r E = 6.38 ∗ 1 0 6 m
G = 6.67 ∗ 1 0 − 11 m 3 s − 2 k g − 1 G =6.67*10^{-11}m^3s^{-2}kg^{-1} G = 6.67 ∗ 1 0 − 11 m 3 s − 2 k g − 1
A ) F ⃗ = G m E m s ( r E + h ) 2 A) \ \vec F= G\frac{m_Em_s}{(r_E+h)^2} A ) F = G ( r E + h ) 2 m E m s
F ⃗ = 6.67 ∗ 1 0 − 11 ∗ 6 ∗ 1 0 24 ∗ 250 ( 6.38 ∗ 1 0 6 + 25 ∗ 1 0 4 ) 2 = 2276.1 \vec F= 6.67*10^{-11}*\frac{6*10^{24}*250}{(6.38*10^6+25*10^4)^2}=2276.1 F = 6.67 ∗ 1 0 − 11 ∗ ( 6.38 ∗ 1 0 6 + 25 ∗ 1 0 4 ) 2 6 ∗ 1 0 24 ∗ 250 = 2276.1
Answer: 2276.1 N \text{Answer:}2276.1N Answer: 2276.1 N
B ) F ⃗ = m a ⃗ ; a ⃗ = F ⃗ m B)\vec F=m\vec a;\vec a =\frac{\vec F}{m} B ) F = m a ; a = m F
a ⃗ = 2276.1 250 = 9.1 \vec a=\frac{2276.1}{250}=9.1 a = 250 2276.1 = 9.1
Answer: a ⃗ = 9.1 m s 2 \text{Answer: }\vec a = 9.1\frac{m}{s^2} Answer: a = 9.1 s 2 m
C ) a ⃗ = v ⃗ 2 r ; r = r E + h C) \vec a=\frac{\vec v^2}{r};r = r_E+h C ) a = r v 2 ; r = r E + h
v ⃗ = ( r E + h ) ∗ a ⃗ \vec v =\sqrt{ (r_E+h)*\vec a} v = ( r E + h ) ∗ a
v ⃗ = ( 6.38 ∗ 1 0 6 + 25 ∗ 1 0 4 ) ∗ 9.1 = 7767.4 \vec v = \sqrt{(6.38*10^6+25*10^4)*9.1}=7767.4 v = ( 6.38 ∗ 1 0 6 + 25 ∗ 1 0 4 ) ∗ 9.1 = 7767.4
Answer: v ⃗ = 7767.4 m s \text{Answer: }\vec v=7767.4 \frac{m}{s} Answer: v = 7767.4 s m
D ) s = v ⃗ T ; s = 2 ∗ π ∗ ( r E + h ) D) s= \vec vT;s= 2*\pi*(r_E+h) D ) s = v T ; s = 2 ∗ π ∗ ( r E + h )
T = 2 ∗ π ∗ ( r E + h ) v ⃗ T = \frac{2*\pi*(r_E+h)}{\vec v} T = v 2 ∗ π ∗ ( r E + h )
T = 2 ∗ 3.14 ∗ ( 6.38 ∗ 1 0 6 + 25 ∗ 1 0 4 ) 7767.4 = 5360 T = \frac{2*3.14*(6.38*10^6+25*10^4)}{7767.4}=5360 T = 7767.4 2 ∗ 3.14 ∗ ( 6.38 ∗ 1 0 6 + 25 ∗ 1 0 4 ) = 5360
T = 5360 s e c = 1 h 29 m i n 20 s e c T =5360 {sec}= 1h\ 29min\ 20 sec T = 5360 sec = 1 h 29 min 20 sec
Answer: T = 5360 s e c = 1 h 29 m i n 20 s e c \text{Answer: }T =5360 {sec}= 1h\ 29min\ 20 sec Answer: T = 5360 sec = 1 h 29 min 20 sec
Comments