Answer to Question #194915 in Classical Mechanics for na su kim

Question #194915

At a bottled water plant, water with a density of 1.00 g/ml passes through a pumping station where it is raised vertically by 5.23 m at the rate of 1,880,000 liters per day. The liquid enters and leaves the pumping station at the same speed and through pipes of equal diameter.

(a)Determine the output mechanical power (in W) of the lift station. Ignore any energy loss due to friction.

  W

(b)Assume an electric motor continuously operating with average power 3.85 kW runs the pump. Find its efficiency.


1
Expert's answer
2021-05-19T11:03:34-0400

P=3,85kW=3850000WP = 3,85 kW= 3850000W

t=24ht = 24h

Wp=PtW_p = Pt

work performed by the pump per day\text{work performed by the pump per day}

Wp=385000024=92400000 JW_p = 3850000*24 = 92400000\ J

work required to raise water to a height\text{work required to raise water to a height}

this is the difference in potential energies\text {this is the difference in potential energies}

Ww=Ep1Ep0W_w = E_{p1}-E_{p0}

Ep0=0E_{p0} =0

Ep1=mghE_{p1}=mgh

h=5.23 mh = 5.23\ m

g=9.8ms2g= 9.8\frac{m}{s^2}

m=ρVm = \rho V

V=1880000l=1880m3V = 1880000 l= 1880m^3

ρ=1gml=1000kgm3\rho= 1\frac{g}{ml}=1000\frac{kg}{m^3}

m=10001880=1880000 kgm = 1000*1880=1880000\ kg

Ep1=mgh=18800009.85.23=96357520 JE_{p1}=mgh= 1880000*9.8*5.23=96357520\ J

Ww=96357520 JW_w= 96357520\ J

η=WpWW=9240000096357520=0.95=95%\eta=\frac{W_p}{W_W}=\frac{92400000}{96357520}=0.95=95\%

Answer :95%\text{Answer :95\%}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment