Answer to Question #184762 in Classical Mechanics for sinethemba

Question #184762

.A bead slides on a smooth rod which is rotating about one end in a vertical plane with uniform angular velocity Omega .form the equation of motion ?


1
Expert's answer
2021-04-26T18:19:20-0400

Let the mass of the bead be m and it is rotating with angular velocity ω\omega .



Applying the conservation of energy,

L=mv22+mrω22mgrsinθ\Rightarrow L= \frac{m v^2}{2}+\frac{mr\omega^2}{2}-mgr\sin\theta

Now, applying Lagrangian equation,

δδt(δLδv)δLδr=0\frac{\delta }{\delta t}(\frac{\delta L}{\delta v})-\frac{\delta L}{\delta r}=0


δLδr=mr(δωδt)2mgsinθ\Rightarrow \frac{\delta L}{\delta r}=mr (\dfrac{\delta\omega}{\delta t})^2 -mg\sin\theta


δLδv=mdrdt\Rightarrow \frac{\delta L}{\delta v}= m\frac{dr}{dt}


δδt(δLδv)=md2rdt2\Rightarrow \frac{\delta }{\delta t}(\frac{\delta L}{\delta v})=m\frac{d^2r}{dt^2}


mr˙˙=mrω2mgsinωtm\dot{\dot{r}}=mr\omega^2-mg\sin\omega t


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment