.A bead slides on a smooth rod which is rotating about one end in a vertical plane with uniform angular velocity Omega .form the equation of motion ?
Let the mass of the bead be m and it is rotating with angular velocity "\\omega" .
Applying the conservation of energy,
"\\Rightarrow L= \\frac{m v^2}{2}+\\frac{mr\\omega^2}{2}-mgr\\sin\\theta"
Now, applying Lagrangian equation,
"\\frac{\\delta }{\\delta t}(\\frac{\\delta L}{\\delta v})-\\frac{\\delta L}{\\delta r}=0"
"\\Rightarrow \\frac{\\delta L}{\\delta r}=mr (\\dfrac{\\delta\\omega}{\\delta t})^2 -mg\\sin\\theta"
"\\Rightarrow \\frac{\\delta L}{\\delta v}= m\\frac{dr}{dt}"
"\\Rightarrow \\frac{\\delta }{\\delta t}(\\frac{\\delta L}{\\delta v})=m\\frac{d^2r}{dt^2}"
"m\\dot{\\dot{r}}=mr\\omega^2-mg\\sin\\omega t"
Comments
Leave a comment