Show that the velocity of impact at the ground of an object thrown vertically upward is equal to the initial velocity of the upward throw.
Let vvv is the velocity of the upward throw, uuu is the velocity of impact at the ground.
0=v−gt,0=v-gt,0=v−gt, ⟹ \implies⟹ t=vg,t=\frac vg,t=gv,
s=vt−gt22=v2g−v22g=v22g;s=vt-\frac{gt^2}{2}=\frac{v^2}{g}-\frac{v^2}{2g}=\frac{v^2}{2g};s=vt−2gt2=gv2−2gv2=2gv2;
s=gt′22 ⟹ t′=2sg=v2g2=vg=t,s=\frac{gt'^2}{2}\implies t'=\sqrt{\frac{2s}{g}}=\sqrt{\frac{v^2}{g^2}}=\frac vg=t,s=2gt′2⟹t′=g2s=g2v2=gv=t,
u=gt′=g⋅vg=v ⟹ u=v.u=gt'=g\cdot \frac vg=v\implies u=v.u=gt′=g⋅gv=v⟹u=v.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments