Question #165895

a 10kg box sits on a slope at an angle of 15 degrees:

What is the normal reaction force the slope exerts on the box.

What is the component of the weight parallel to the slope.

If The box accelerates down the slope at 0.5m/s2, calculate the magnitude of friction.


1
Expert's answer
2021-02-23T10:03:57-0500

the following forces act on the box:\text{the following forces act on the box:}

Fg=mg=109.8=98 gravity force\vec{F_g} = mg = 10*9.8=98 \text{ gravity force}

Nreaction force \vec{N}-\text{reaction force }

Ffr friction force\vec{F_{fr}}\text{ friction force}

Let us choose the coordinate system - the X axis parallel to the slope and the Y axis perpendicular to the slope\text{Let us choose the coordinate system - the X axis parallel to the slope}\newline \text{ and the Y axis perpendicular to the slope}

projection of forces on the Y axis:\text{projection of forces on the Y axis:}

NFgy=0\vec{N}-\vec{F_{gy}}=0

Fgy=Fgcosα=mgcos15°94.66 N\vec{F_{gy}}=\vec{F_g}\cos\alpha= mg\cos{15\degree}\approx94.66\ N

N=Fgy=94.66 N\vec{N}=\vec{F_{gy}}=94.66\ N

projection of forces on the X axis:\text{projection of forces on the X axis:}

F=FgxFfr\vec{F}= \vec{F_{gx}}-\vec{F_{fr}}

F=ma=100.5=5 N\vec{F}=ma=10*0.5=5\ N

Fgx=mgsinα=109.8sin15°25.36 N\vec{F_{gx}}= mg\sin\alpha=10*9.8*\sin15\degree\approx25.36\ N

Ffr=FgxF=25.365=20.36 N\vec{F_{fr}}= \vec{F_{gx}}-\vec{F}=25.36-5=20.36\ N

Answer: 94.66 N normal reaction force;25.36 N component of the weight parallel to the slope;

20.36 N magnitude of friction







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS