Two forces, F1 = 8.0 N, 60o Northwest and F2 = 12.0 N, Southwest, are applied to a particle at the origin. What third force is needed so that the particle will not be displaced from the origin?
−F3x=F1cos60°+F2cos45°,F3x=−12.49 N,-F_{3x}=F_1cos 60°+F_2cos45°,\\ F_{3x}=-12.49~\text{N},−F3x=F1cos60°+F2cos45°,F3x=−12.49 N,
F3y=F2sin45°−F1sin60°,F3y=1.56 N.F_{3y}=F_2sin45°-F_1sin60°,\\ F_{3y}=1.56~\text{N}.F3y=F2sin45°−F1sin60°,F3y=1.56 N.
F=F3x2+F3y2=12.59 N,F=\sqrt{F_{3x}^2+F_{3y}^2}=12.59~\text{N},F=F3x2+F3y2=12.59 N,
α=arctan∣F3yF3x∣=83° \alpha=arctan|\frac{F_{3y}}{F_{3x}}|=83°~α=arctan∣F3xF3y∣=83° East of North.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments