Question #161863

Derive this formula for elastic collision

V1=(m1-m2 all over m1+m2)u1+(2m2 over m1+m2)u2


1
Expert's answer
2021-02-07T19:07:36-0500

Let’s derive the formula for the final velocities in case of elastic collision. From the law of conservation of momentum, we have:


m1u1+m2u2=m1v1+m2v2.(1)m_1u_1+m_2u_2=m_1v_1+m_2v_2. (1)

Since collision is elastic, kinetic energy is conserved and we can write:


12m1u12+12m2u22=12m1v12+12m2v22.(2)\dfrac{1}{2}m_1u_1^2+\dfrac{1}{2}m_2u_2^2=\dfrac{1}{2}m_1v_1^2+\dfrac{1}{2}m_2v_2^2. (2)

Let’s rearrange equations (1) and (2):


m1(u1v1)=m2(v2u2),(3)m_1(u_1-v_1)=m_2(v_2-u_2), (3)m1(u12v12)=m2(v22u22).(4)m_1(u_1^2-v_1^2)=m_2(v_2^2-u_2^2). (4)

Let’s divide equation (4) by equation (3):


(u1v1)(u1+v1)u1v1=(v2u2)(v2+u2)v2u2,\dfrac{(u_1-v_1)(u_1+v_1)}{u_1-v_1}=\dfrac{(v_2-u_2)(v_2+u_2)}{v_2-u_2},u1+v1=u2+v2.(5)u_1+v_1=u_2+v_2. (5)

Let's express v2v_2 from the equation (5) in terms of u1u_1, u2u_2 and v1v_1:


v2=u1u2+v1.(6)v_2=u_1-u_2+v_1. (6)

Let’s substitute equation (6) into equation (3). After simplification, we get:


(m1m2)u1+2m2u2=(m1+m2)v1.(m_1-m_2)u_1+2m_2u_2=(m_1+m_2)v_1.

From this equation we can find v1v_1:


v1=(m1m2)(m1+m2)u1+2m2(m1+m2)u2.v_1=\dfrac{(m_1-m_2)}{(m_1+m_2)}u_1+\dfrac{2m_2}{(m_1+m_2)}u_2.

Substituting v1v_1into the equation (6) we can find v2v_2:


v2=2m1(m1+m2)u1+(m2m1)(m1+m2)u2.v_2=\dfrac{2m_1}{(m_1+m_2)}u_1+\dfrac{(m_2-m_1)}{(m_1+m_2)}u_2.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS