What is the lagrange's equation of simple pendulum?
Let the length of the pendulum be l, then we can represent the co-ordinates of the motion of the pendulum as per the given question
"x(\\theta)= l\\sin\\theta"
"y(\\theta) = -l\\cos\\theta"
now, differentiating with respect to t,
"\\frac{d\\theta}{dt}=\\dot{\\theta}"
"\\frac{d(x(\\theta))}{dt}=l\\cos\\theta \\frac{d\\theta}{dt}"
"\\Rightarrow \\frac{d(x(\\theta))}{dt}=l\\dot{\\theta} \\cos\\theta"
"\\frac{d(y(\\theta))}{dt}=l\\sin\\theta \\frac{d\\theta}{dt}"
"\\Rightarrow \\frac{d(y(\\theta))}{dt}=l\\dot{\\theta}\\sin\\theta"
Now, applying the conservation of energy
"L=T-V=KE-PE"
"=\\frac{ml\\dot{\\theta^2}}{2}-mgl(1-\\cos\\theta)"
We know that the Lagrange equation for the generalized co-ordinate
"\\frac{d}{dt}(\\frac{(\\partial L)}{d\\dot{\\theta}})-\\frac{\\partial L}{\\partial{\\theta}}=0"
"\\Rightarrow \\ddot{\\theta}+\\frac{g}{l}\\sin(\\theta)=0"
Hence, natural frequency of the simple pendulum
"\\omega = \\sqrt{\\frac{g}{l}}"
"T=2\\pi \\sqrt{\\frac{l}{g}}"
Comments
Leave a comment