U=kx22,U=\frac{kx^2}{2},U=2kx2,
U=35⋅0.0322=15.75 mJ,U=\frac{35\cdot 0.03^2}{2}=15.75~\text{mJ},U=235⋅0.032=15.75 mJ,
ω=km,\omega=\sqrt{\frac km},ω=mk,
cosωt=xA,sinωt=1−x2A2,cos \omega t=\frac xA,\\sin\omega t=1-\frac{x^2}{A^2},cosωt=Ax,sinωt=1−A2x2,
K=mω2A2sin2ωt2=k(A2−x2)2,K=\frac{m\omega^2A^2sin^2\omega t}{2}=\frac{k(A^2-x^2)}{2},K=2mω2A2sin2ωt=2k(A2−x2),
K=35⋅(0.042−0.032)2=12.25 mJ.K=\frac{35\cdot(0.04^2-0.03^2)}{2}=12.25~\text{mJ}.K=235⋅(0.042−0.032)=12.25 mJ.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments