Question #160913
A piston in a gasoline engine is in simple harmonic motion. The engine is running at the rate of 3600 rev/min. Taking the extremes of its position relative to its center point as 65.00cm, find the magnitudes of the
(a) the maximum velocity
(b) the maximum acceleration of the piston.
1
Expert's answer
2021-02-10T10:11:23-0500

x=Asin(ωt+φ),x=Asin(\omega t+\varphi),

v=Aωcos(ωt+φ), vmax=Aω,v=A\omega cos(\omega t+\varphi), ~v_{max}=A\omega,

a=Aω2sin(ωt+φ), amax=Aω2.a=-A\omega^2 sin(\omega t+\varphi), ~a_{max}=A\omega ^2.


A=65 cm=0.65 m,A=65 ~cm=0.65 ~m,

n=3600 revmin=60 revs,n=3600~\frac{rev}{min}=60~\frac{rev}{s},

ω=2πn=2π60=120π rads.\omega=2\pi n=2\pi \cdot 60=120\pi~\frac{rad}{s}.


a)

vmax=0.65120π=245 ms,v_{max}=0.65\cdot 120\pi=245~\frac ms,

b)

amax=0.651202π2=92380 ms2.a_{max}=0.65\cdot 120^2\cdot \pi^2=92380 ~\frac{m}{s^2}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS