Given,
Mass of the spaceship = m
Velocity of the spaceship = v
So, initial momentum of the spaceship (p) = mv
As per question, "dm" mass fired with "v_o" velocity in opposite direction.
Applying the conservation of momentum,
Initial momentum = final momentum
"p=mv"
"\\Rightarrow \\frac{dp}{dt}=\\frac{dm}{dt}v_o+m\\frac{dv}{dt}"
change in momentum will remain unchanged,
so, "\\dfrac{dp}{dt}=0"
"\\Rightarrow \\dfrac{dm}{m}=-\\frac{dv}{v_o}"
"d\\overrightarrow{J}=d\\overrightarrow{p}"
"\\Rightarrow \\overrightarrow{p_f}-\\overrightarrow{p_i}=-mgdt\\hat{j}"
"\\Rightarrow mdv-dm_gu=-mgdt"
"\\Rightarrow mdv=-dm u-mgdt"
"\\Rightarrow dv=-u\\frac{dm}{m}-gdt"
Comments
Leave a comment