Given,
Mass of the particle (m) = 2kg
Particle starts from t = 0
Force "F= 2 \\hat{i} + 4t\\hat{ j} + 6t^2\\hat{ k}"
Acceleration of the particle "a=\\frac{F}{m}"
Hence, acceleration of the particle "(a)=\\frac{2 \\hat{i} + 4t\\hat{ j} + 6t^2\\hat{ k}}{2}"
"\\Rightarrow \\overrightarrow{a} = \\hat{i} + 2t\\hat{ j} + 3t^2\\hat{ k}"
"|a|=\\sqrt{1+4t^2+9t^4}"
we know "\\overrightarrow{a}=\\frac{dv}{dt}"
Hence, "\\overrightarrow{dv}=\\overrightarrow{a}dt"
Now, substituting the values, "\\int dv= \\int_{t=0}^{t}(\\hat{i} + 2t\\hat{ j} + 3t^2\\hat{ k})dt"
"\\Rightarrow \\int dv= (t\\hat{i} + \\frac{1}{2}2t^2\\hat{ j} +\\frac{1}{3}3t^3\\hat{ k})"
"v= (t\\hat{i} + t^2\\hat{ j} +t^3\\hat{ k})"
"|v|=\\sqrt{t^2+t^4+t^6}"
We know that the relation between the position and the velocity is
"\\overrightarrow{v}=\\frac{\\overrightarrow{dx}}{dt}"
Now, "\\overrightarrow{dx}=\\overrightarrow{v}dt"
Now, substituting the values,
"\\Rightarrow \\int \\overrightarrow{dx}=\\int_{t=0}^{t}(t\\hat{i} + t^2\\hat{ j} +t^3\\hat{ k})dt"
"\\Rightarrow \\overrightarrow{x}=(\\frac{t^2}{2}\\hat{i} + \\frac{t^3}{3}\\hat{ j} +\\frac{t^4}{4}\\hat{ k})"
"|x|=\\sqrt{\\frac{t^4}{4}+\\frac{t^6}{9}+\\frac{t^8}{16}}"
Comments
Leave a comment