"\\text{a)the stone moves with equal slowness:}"
"V = V_0-gt"
"V_0=u"
"V=u-gt"
"\\text{the maximum lifting height occurs when the stone begins to move down}"
"V=0"
"u-gt=0"
"t=\\frac{u}{g}"
"\\text{height of the stone above the ground:}"
"h = V_0t-\\frac{gt^2}{2}=ut-\\frac{gt^2}{2}"
"h_{max } \\text{ when }t=\\frac{u}{g}"
"h_{max}=u*\\frac{u}{g}-\\frac{g}{2}*\\frac{u^2}{g^2}=\\frac{u^2}{2g}"
"\\text{b) dimensional analysis:}"
"h_{max}=\\frac{u^2}{2g}"
"h_{max}-[m]"
"u-[m\/s]"
"g-[m\/s^2]"
"\\frac{u^2}{2g}-[\\frac{m^2\/s^2}{m\/s^2}]=[m]"
"\\text{the dimensions of the left and right sides }"
"\\text{of the formula coincide}"
Answer:"h_{max}=\\frac{u^2}{2g}"
Comments
Leave a comment