Question #148173
A rope at a 45° angle from the roof and a rope at a 55° angle from the roof is holding a pizza that weighs 380 N you need to find the tension of both ropes. It is at equilibrium
1
Expert's answer
2020-12-03T10:20:45-0500

T=T1+T2\vec{T}= \vec{T_1}+\vec{T_2}

T=Fp|\vec{T}| =|\vec{F_p}|

T1=Tcos(α)\vec{T_1}= \vec{T}*cos(\alpha)

T2=Tcos(β)\vec{T_2}= \vec{T}*cos(\beta)

T1=Fpcos(α)=380cos450268.7|\vec{T_1}|= |\vec{F_p}*cos(\alpha)|=380*cos45^0\approx268.7

T2=Fpcos(β)=380cos550218|\vec{T_2}|= |\vec{F_p}*cos(\beta)|=380*cos55^0\approx218

where T total reaction force\text{where }\vec{T}\text{ total reaction force}

Fp pizza that weighs\vec{F_p}\text{ pizza that weighs}

T1,T2,α,βrope tension forces and roof corners\vec{T_1},\vec{T_2},\alpha,\beta - \text{rope tension forces and roof corners}

Answer: 268.7N and 218 N - rope tension



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS