As per the given question,
"x_1=l_1\\sin\\phi_1"
"y_1=-l_1\\cos\\phi_1"
"x_2=l_1\\sin\\phi_1+l_2\\sin\\phi_2"
"y_2=-(l_1\\cos\\phi_1+l_2\\cos\\phi_2)",
Now, taking the differentiation ,
"\\frac{dx_1}{dt}=l_1\\cos\\phi_1 \\frac{d\\phi_1}{dt}"
"\\frac{dy_1}{dt}=l_1\\sin\\phi_1 \\frac{d\\phi_1}{dt}"
"\\frac{y_2}{dt}=l_1\\sin\\phi_1\\frac{d\\phi_1}{dt}+l_2\\sin\\phi_2\\frac{d\\phi_2}{dt}"
"\\frac{x_2}{dt}=(l_1\\cos\\phi_1\\frac{d\\phi_1}{dt}+l_2\\cos\\phi_2 \\frac{d\\phi_2}{dt})"
"L=T-V=\\frac{m_1v_1^2}{2}+\\frac{m_2v_2^2}{2}-V"
"T=\\frac{m_1((\\frac{x_1}{dt})^2+(\\frac{y_1}{dt})^2)}{2}+\\frac{m_1((\\frac{x_2}{dt})^2+(\\frac{y_2}{dt})^2)}{2}"
Hence langrangian equation will be
"L=\\frac{(m_1+m_2)l_1^2}{2}(\\frac{d\\phi_1}{dt})^2+\\frac{(m_2)l_2^2}{2}(\\frac{d\\phi_2}{dt})^2+m_2l_1l_2\\frac{d\\phi_1}{dt}\\frac{d\\phi_2}{dt}\\cos(\\phi_1-\\phi_2)+(m_1+m_2)gl_1\\cos\\phi_1+m_2gl_2\\cos\\phi_1"
Comments
Leave a comment