Question #142734
A horizontal spring-mass system oscillates on a frictionless table. If the ratio of the mass to the spring constant is 0.042 kg·m/N, and the maximum speed of the mass was measured to be 5.9 m/s, the maximum extension of the spring will be
1
Expert's answer
2020-11-06T10:13:18-0500

E=Ek+Ep=constE = E_k+E_p=\text{const}

Ek=mV22 Ep=kx22E_k=\frac{mV^2}{2}\ E_p=\frac{kx^2}{2}

where k is the stiffness of the spring x the size of compression (extension)\text{where } k \text{ is the stiffness of the spring x the size of compression (extension)}

for xmax V=0 E=kxmax22\text{for }x_{max}\ V=0 \ E=\frac{kx^2_{max}}{2}

for x=0 Vmax E=mVmax22\text{for }x=0\ V_{max}\ E=\frac{mV_{max}^2}{2}

kxmax22=mVmax22\frac{kx^2_{max}}{2}=\frac{mV^2_{max}}{2}

xmax=mkV=0.0425.91.21mx_{max}=\sqrt{\frac{m}{k}}*V=\sqrt{0.042}*5.9\approx1.21m

Answer: xmax1.21mx_{max}\approx1.21m



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS