Question #139015
What is partition function for n dimensional quantum harmonic oscillator.
1
Expert's answer
2020-10-19T13:24:57-0400

1-d quantum oscillator is given by a hamiltonian:

H^1=hω1(a^+a+12)\widehat H_1 = h\omega_1(\widehat a^+a+\frac1 2)

n-d quantum oscillator :

H^N=k=1Nhω1(a^k+ak+12)\widehat H_N = \sum_{k=1}^{N}h\omega_1(\widehat a_k^+a_k+\frac1 2)

The partition function of such model is:

ZN(β)=TrH(eβH^N)Z_N(\beta) = Tr_{\mathscr{H}}(e^{-\beta\widehat H_N})

there is H\mathscr{H} - hilbert space of n - d quantum oscillator

Rewrite:

TrH(eβH^N)=k=0Nnk=0eβhωk(nk+12)=Tr_{\mathscr{H}}(e^{-\beta\widehat H_N}) = \prod^{N}_{k=0}\sum^{\infty}_{n_k=0} e^{-\beta h \omega_k(n_k+\frac 1 2)} =

k=0Neβhωk211eβhωk=2Nk=0Nsinh(βhωk2)\prod^{N}_{k=0} e^ {\frac {-\beta h \omega_k}{2}} \frac{1}{1-e^ {{-\beta h \omega_k}}} = \frac {2^N}{\prod^{N}_{k=0} sinh(\frac {\beta h \omega_k}{2})}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS