1-d quantum oscillator is given by a hamiltonian:
H ^ 1 = h ω 1 ( a ^ + a + 1 2 ) \widehat H_1 = h\omega_1(\widehat a^+a+\frac1 2) H 1 = h ω 1 ( a + a + 2 1 )
n-d quantum oscillator :
H ^ N = ∑ k = 1 N h ω 1 ( a ^ k + a k + 1 2 ) \widehat H_N = \sum_{k=1}^{N}h\omega_1(\widehat a_k^+a_k+\frac1 2) H N = ∑ k = 1 N h ω 1 ( a k + a k + 2 1 )
The partition function of such model is:
Z N ( β ) = T r H ( e − β H ^ N ) Z_N(\beta) = Tr_{\mathscr{H}}(e^{-\beta\widehat H_N}) Z N ( β ) = T r H ( e − β H N )
there is H − \mathscr{H} - H − hilbert space of n - d quantum oscillator
Rewrite:
T r H ( e − β H ^ N ) = ∏ k = 0 N ∑ n k = 0 ∞ e − β h ω k ( n k + 1 2 ) = Tr_{\mathscr{H}}(e^{-\beta\widehat H_N}) = \prod^{N}_{k=0}\sum^{\infty}_{n_k=0} e^{-\beta h \omega_k(n_k+\frac 1 2)} = T r H ( e − β H N ) = ∏ k = 0 N ∑ n k = 0 ∞ e − β h ω k ( n k + 2 1 ) =
∏ k = 0 N e − β h ω k 2 1 1 − e − β h ω k = 2 N ∏ k = 0 N s i n h ( β h ω k 2 ) \prod^{N}_{k=0} e^ {\frac {-\beta h \omega_k}{2}} \frac{1}{1-e^ {{-\beta h \omega_k}}} = \frac {2^N}{\prod^{N}_{k=0} sinh(\frac {\beta h \omega_k}{2})} ∏ k = 0 N e 2 − β h ω k 1 − e − β h ω k 1 = ∏ k = 0 N s inh ( 2 β h ω k ) 2 N
Comments