1-d quantum oscillator is given by a hamiltonian:
"\\widehat H_1 = h\\omega_1(\\widehat a^+a+\\frac1 2)"
n-d quantum oscillator :
"\\widehat H_N = \\sum_{k=1}^{N}h\\omega_1(\\widehat a_k^+a_k+\\frac1 2)"
The partition function of such model is:
"Z_N(\\beta) = Tr_{\\mathscr{H}}(e^{-\\beta\\widehat H_N})"
there is "\\mathscr{H} -" hilbert space of n - d quantum oscillator
Rewrite:
"Tr_{\\mathscr{H}}(e^{-\\beta\\widehat H_N}) = \\prod^{N}_{k=0}\\sum^{\\infty}_{n_k=0} e^{-\\beta h \\omega_k(n_k+\\frac 1 2)} ="
"\\prod^{N}_{k=0} e^ {\\frac {-\\beta h \\omega_k}{2}} \\frac{1}{1-e^ {{-\\beta h \\omega_k}}} = \\frac {2^N}{\\prod^{N}_{k=0} sinh(\\frac {\\beta h \\omega_k}{2})}"
Comments
Leave a comment