A). since,
"Y=\\tan(x)X+\\frac{gX^2}{2u^2}(1+\\tan^2(x))"Now,
"3.75=5\\tan(x)+\\frac{5}{4}(1+\\tan^2(x))"Let,"p=\\tan(x)" ,thus
"p^2+p-2=0\\implies (p+2)(p-1)=0\\\\\\implies p=1,-2"By convention, since "x" is positive and "0^\\circ<x\\leq 90^\\circ" ,hence "p=1\\iff \\tan(x)=1"
B).As "5=u\\cos(x)t\\implies t=\\frac{1}{\\sqrt{2}}" and "v_y=u\\sin(x)-gt\\implies v_y=0" ,thus
"v=\\sqrt{v_x^2+v_y^2}=5\\sqrt{2}m\/s"C).When the particle reaches the ground
"3.75=\\frac{1}{2}gt^2\\implies t=\\frac{\\sqrt{3}}{2}"And,
"x_1=u\\cos(x)t=5\\sqrt{\\frac{3}{2}}\\approx6.12m"
Comments
Leave a comment