As per the question,
Mass of the particle =M
Initial velocity of the particle =Vo
Let the particle is moving upwards, so force of friction due to air resistance will downwards.
F=−mg−kvo
Where k is constant.
t=∫vovF(v)mdv
=−m∫vovmg+kvdv
=k−mln(mg+kv)∣vov
=k−mln(mg+kvmg+kvo)
⇒m−kt=ln(mg+kvmg+kvo)
⇒mg+kvmg+kvo=em−kt
⇒v=(kmg+vo)em−kt−kmg
v=dtdx
Hence,
dx=((kmg+vo)em−kt−kmg)dt
Now, taking the integration of both side of the above equation,
∫xoxdx=∫ot((kmg+vo)em−kt−kmg)dt
⇒x=xo−kmgt+(k2m2g+kmvo)[1−em−kt]
Comments