As per the question,
Mass of the particle "=M"
Initial velocity of the particle "=V_o"
Let the particle is moving upwards, so force of friction due to air resistance will downwards.
"F=-mg-kv_o"
Where k is constant.
"t=\\int_{v_o}^{v}\\frac{mdv}{F(v)}"
"=-m\\int_{v_o}^{v}\\frac{ dv}{mg+kv}"
"=\\frac{-m}{k}\\ln(mg+kv)|_{vo}^v"
"=\\frac{-m}{k}\\ln(\\frac{mg+kv_o}{mg+kv})"
"\\Rightarrow \\frac{-kt}{m}=\\ln(\\frac{mg+kv_o}{mg+kv})"
"\\Rightarrow \\frac{mg+kv_o}{mg+kv}=e^{\\frac{-kt}{m}}"
"\\Rightarrow v=(\\frac{mg}{k}+v_o)e^{\\frac{-k}{m}t}-\\frac{mg}{k}"
"v=\\frac{dx}{dt}"
Hence,
"dx=((\\frac{mg}{k}+v_o)e^{\\frac{-k}{m}t}-\\frac{mg}{k})dt"
Now, taking the integration of both side of the above equation,
"\\int_{x_o}^{x} dx=\\int_o^t ((\\frac{mg}{k}+v_o)e^{\\frac{-k}{m}t}-\\frac{mg}{k})dt"
"\\Rightarrow x=x_o-\\frac{mgt}{k}+(\\frac{m^2 g}{k^2}+\\frac{mv_o}{k})[1-e^{\\frac{-kt}{m}}]"
Comments
Leave a comment