Question #122835
A particle of mass m is projected vertically up with an initial velocity of Vo . If the force due to the friction of the air is directly proportional to its instantaneous velocity,
Calculate the velocity and position of the particle as a function of time?
1
Expert's answer
2020-06-18T11:21:07-0400

As per the question,

Mass of the particle =M=M

Initial velocity of the particle =Vo=V_o

Let the particle is moving upwards, so force of friction due to air resistance will downwards.

F=mgkvoF=-mg-kv_o

Where k is constant.

t=vovmdvF(v)t=\int_{v_o}^{v}\frac{mdv}{F(v)}


=mvovdvmg+kv=-m\int_{v_o}^{v}\frac{ dv}{mg+kv}


=mkln(mg+kv)vov=\frac{-m}{k}\ln(mg+kv)|_{vo}^v


=mkln(mg+kvomg+kv)=\frac{-m}{k}\ln(\frac{mg+kv_o}{mg+kv})


ktm=ln(mg+kvomg+kv)\Rightarrow \frac{-kt}{m}=\ln(\frac{mg+kv_o}{mg+kv})


mg+kvomg+kv=ektm\Rightarrow \frac{mg+kv_o}{mg+kv}=e^{\frac{-kt}{m}}


v=(mgk+vo)ekmtmgk\Rightarrow v=(\frac{mg}{k}+v_o)e^{\frac{-k}{m}t}-\frac{mg}{k}


v=dxdtv=\frac{dx}{dt}


Hence,

dx=((mgk+vo)ekmtmgk)dtdx=((\frac{mg}{k}+v_o)e^{\frac{-k}{m}t}-\frac{mg}{k})dt


Now, taking the integration of both side of the above equation,

xoxdx=ot((mgk+vo)ekmtmgk)dt\int_{x_o}^{x} dx=\int_o^t ((\frac{mg}{k}+v_o)e^{\frac{-k}{m}t}-\frac{mg}{k})dt


x=xomgtk+(m2gk2+mvok)[1ektm]\Rightarrow x=x_o-\frac{mgt}{k}+(\frac{m^2 g}{k^2}+\frac{mv_o}{k})[1-e^{\frac{-kt}{m}}]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS