As per the given question,
The falling particle Q of mass is m, is experiencing a resistiv force "=mkv^2"
Here v is the speed and k is the positive constant
Now applying the force balance equation of the net resultant force,
"\\Rightarrow F=mg- mkv^2"
"\\Rightarrow m \\frac{dx^2}{dt^2}=m(g-kv^2)"
"\\Rightarrow \\frac{dx^2}{dt^2}=(g-kv^2)"
Now we can write this as,
"\\Rightarrow \\frac{d}{dt}(\\frac{dx}{dt})=(g-kv^2)"
"\\Rightarrow" "\\frac{dv}{dt}=g-kv^2"
Now applying the maxima and minima concept,
"\\frac{dv}{dx}=0"
"\\Rightarrow g-kv^2=0"
"\\Rightarrow v=\\sqrt{\\frac{g}{k}}"
ii)
"\\Rightarrow \\frac{dv}{dt}=g-kv^2"
"\\Rightarrow \\frac{dv}{g-kv^2}=dt"
now after the integration,
"t=\\frac{U^2}{2g} \\ln\u2061[\\frac{1}{2 (1+V^2\/U^2 )}]."
Comments
Leave a comment