according to Newton’s second law:
"mg-b\\dot{x}^2 = m\\ddot{x}\\\\\n\\ddot{x}+\\frac{b}{m}\\dot{x}^2 = g"
find the complementary solution:
"\\ddot{x}+\\frac{b}{m}\\dot{x} = 0\\\\\n\\dot{x}=y\\\\\n\\dot{y}+\\frac{b}{m}y = 0\\\\\ny(t)=c_1e^{-\\frac{b}{m}t}\\\\\nx(t)=c_1e^{-\\frac{b}{m}t}+c_2"
and then general solution is:
"x(t)=c_1e^{-\\frac{b}{m}t}+\\frac{mgt}{b}+c_2\\\\\nv=\\dot{x} = \\frac{-bc_1}{m}e^{-\\frac{b}{m}t}+\\frac{mg}{b}\\\\\nv(0)=\\frac{-bc_1}{m}+\\frac{mg}{b} = 0\\\\\nc_1=\\frac{m^2g}{b^2}\\\\\nx(0) = \\frac{m^2g}{b^2}+c_2=0\\\\\nc_2 = -\\frac{m^2g}{b^2}\\\\\nx(t)=\\frac{m^2g}{b^2}e^{-\\frac{b}{m}t}+\\frac{mgt}{b}-\\frac{m^2g}{b^2}\\\\\nv(t) = -\\frac{mg}{b}e^{-\\frac{b}{m}t}+\\frac{mg}{b}\\\\\n\\begin{cases}\nx(t)\\sim \\frac{mgt}{b}\\\\\nv(t)\\sim \\frac{mg}{b}\n\\end{cases}\n, t\\to\\infty\\\\\n\\begin{cases}\nx(t)\\sim \\frac{m^2g}{b^2}e^{-\\frac{b}{m}t}\\\\\nv(t)\\sim -\\frac{mg}{b}e^{-\\frac{b}{m}t}\n\\end{cases}\n,t\\to0"
Comments
Leave a comment