according to Newton’s second law:
mg−bx˙2=mx¨x¨+mbx˙2=g
find the complementary solution:
x¨+mbx˙=0x˙=yy˙+mby=0y(t)=c1e−mbtx(t)=c1e−mbt+c2
and then general solution is:
x(t)=c1e−mbt+bmgt+c2v=x˙=m−bc1e−mbt+bmgv(0)=m−bc1+bmg=0c1=b2m2gx(0)=b2m2g+c2=0c2=−b2m2gx(t)=b2m2ge−mbt+bmgt−b2m2gv(t)=−bmge−mbt+bmg{x(t)∼bmgtv(t)∼bmg,t→∞{x(t)∼b2m2ge−mbtv(t)∼−bmge−mbt,t→0
Comments