Question #118722
A flywheel has a moment of inertia of 1.6 × 10−3 kg.m2. When a constant torque is applied, it reaches an angular velocity of 1200 rev/min in 15 s. Assuming it started from rest, find: i) the angular acceleration ii) the unbalanced torque applied iii) the angle turned through 15 s iv) the work done on the flywheel by the torque
1
Expert's answer
2020-05-28T13:10:18-0400

Let's write the given information first below,

Moment of Inertia of the Flywheel,I=1.6×103Kgm2I=1.6\times10^{-3}\: Kg\:m^2 .

Final angular speed ω=1200rev/min=1200×2π60=40πrad/s\omega=1200rev/min=1200\times \frac{2\pi}{60}=40\pi \:rad/s .

Initial angular speed ω0=0\omega_0=0 .

Time t=15st=15s .

i).Since,

ω=ω0+αt\omega=\omega_0+\alpha t

On putting the given value to above equation we get,


40π=0+15α    α=8.38rad/s240\pi=0+15\alpha\implies \alpha=8.38 rad/s^2

ii).Torque is given by,

τ=Iα    τ=1.6×103×8.38=13.408×103Nm\tau=I\alpha\\\implies \tau=1.6\times 10^{-3}\times 8.38=13.408\times 10^{-3}Nm


iii).We know that,

θ=ω0t+12αt2    θ=12×13.408×103×225=942.47rad\theta=\omega_0t+\frac{1}{2}\alpha t^2\\ \implies \theta=\frac{1}{2}\times13.408\times10^{-3}\times 225=942.47 \:rad

iv).From, work energy-principle,

W=12Iω212Iω02W=\frac{1}{2}I\omega^2-\frac{1}{2}I\omega_0^2

Thus, work done on the Flywheel by given torque is,


W=12×1.6×103(40π)2    W=12.63JW=\frac{1}{2}\times1.6\times10^{-3}(40\pi)^2\\\implies W=12.63J


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Clement Odosanau
28.05.20, 17:41

Good

LATEST TUTORIALS
APPROVED BY CLIENTS