We have given "X" is the maximum horizontal range of the given projectile, thus
"X= v_{0}^2\\frac{\\sin(2\\theta_0)}{g}\\implies \\theta_0=45^{\\circ}"where,"v_0 \\& \\theta_0" is the initial velocity and angle of the projectile respectively.Hence,
"X=\\frac{v_{0}^2}{g}\\implies v_0=\\sqrt{Xg} \\hspace{1cm}(1)"Now, if the same ball projected from height "X" at the same speed "v_0" and angle "\\theta=45^{\\circ}" ,then time of flight will be, when the ball reaches ground i.e
"X=v_0\\sin(\\theta)T-\\frac{1}{2}gT^2"where, "T" is the time of flight of the ball.Thus from "(1)" ,above equation can be simplified to,
"-X=\\sqrt{Xg}\\sin(45^{\\circ})T-\\frac{1}{2}gT^2\\\\ \\implies \\sqrt{\\frac{Xg}{2}}T-\\frac{1}{2}gT^2+X=0\\\\"Clearly, this equation is quadratic in "T" ,Hence,
"T=\\frac{-\\sqrt{\\frac{Xg}{2}} \\pm \\sqrt{\\frac{Xg}{2} +4\\frac{g}{2}X}}{-\\frac{g}{2}}\\\\\n\\implies T=\\frac{-\\sqrt{\\frac{Xg}{2}} - \\sqrt{5\\frac{Xg}{2}}}{-\\frac{g}{2}}\\\\\n\\implies T=(1+\\sqrt{5})\\sqrt{\\frac{2X}{g}}\\hspace{1cm}(\\because T\\nleq 0)\\hspace{1cm}(2)"Thus, the range at which given ball will reach at time "T" is,
"R=v_0\\cos(\\theta)T\\\\\n\\implies R=\\sqrt{\\frac{Xg}{2}}\\bigg(1+\\sqrt{5})\\sqrt{\\frac{2X}{g}}\\bigg) \\hspace{1cm}(\\because from, (1) \\& (2))\\\\\n\\implies R=(1+\\sqrt{5})X"Hence, we are done.
Comments
Leave a comment