Question #116925
A boy can throw a ball obliquely to a maximum horizontal distance 'X' while standing on the ground.If he throws the same ball from the top of a tower of height ' X ' at an angle of 45° above the horizontal from the foot of the tower the ball hits the ground at a distance (Assume same initial speed)
1
Expert's answer
2020-05-19T10:58:55-0400

We have given XX is the maximum horizontal range of the given projectile, thus

X=v02sin(2θ0)g    θ0=45X= v_{0}^2\frac{\sin(2\theta_0)}{g}\implies \theta_0=45^{\circ}

where,v0&θ0v_0 \& \theta_0 is the initial velocity and angle of the projectile respectively.Hence,

X=v02g    v0=Xg(1)X=\frac{v_{0}^2}{g}\implies v_0=\sqrt{Xg} \hspace{1cm}(1)

Now, if the same ball projected from height XX at the same speed v0v_0 and angle θ=45\theta=45^{\circ} ,then time of flight will be, when the ball reaches ground i.e

X=v0sin(θ)T12gT2X=v_0\sin(\theta)T-\frac{1}{2}gT^2

where, TT is the time of flight of the ball.Thus from (1)(1) ,above equation can be simplified to,

X=Xgsin(45)T12gT2    Xg2T12gT2+X=0-X=\sqrt{Xg}\sin(45^{\circ})T-\frac{1}{2}gT^2\\ \implies \sqrt{\frac{Xg}{2}}T-\frac{1}{2}gT^2+X=0\\

Clearly, this equation is quadratic in TT ,Hence,

T=Xg2±Xg2+4g2Xg2    T=Xg25Xg2g2    T=(1+5)2Xg(T0)(2)T=\frac{-\sqrt{\frac{Xg}{2}} \pm \sqrt{\frac{Xg}{2} +4\frac{g}{2}X}}{-\frac{g}{2}}\\ \implies T=\frac{-\sqrt{\frac{Xg}{2}} - \sqrt{5\frac{Xg}{2}}}{-\frac{g}{2}}\\ \implies T=(1+\sqrt{5})\sqrt{\frac{2X}{g}}\hspace{1cm}(\because T\nleq 0)\hspace{1cm}(2)

Thus, the range at which given ball will reach at time TT is,

R=v0cos(θ)T    R=Xg2(1+5)2Xg)(from,(1)&(2))    R=(1+5)XR=v_0\cos(\theta)T\\ \implies R=\sqrt{\frac{Xg}{2}}\bigg(1+\sqrt{5})\sqrt{\frac{2X}{g}}\bigg) \hspace{1cm}(\because from, (1) \& (2))\\ \implies R=(1+\sqrt{5})X

Hence, we are done.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS