Question #116745
A 1kg mass slides down several frictionless inclines - each incline angle decreases by 1 degree for each 1-meter segment travelled. When the mass reaches the 0-degree incline, determine the total time travel time, the total height the mass falls and velocity.
1
Expert's answer
2020-05-18T10:32:52-0400

If the first meter inclined 90°, the other 89°, and so on, the total height will be:


H=d sin90+d sin89+...+d sin23+...+d sin1==di=190sinni=57.79 m.H=d\text{ sin}90^\circ+d\text{ sin}89^\circ+...+d\text{ sin}23^\circ+...+d\text{ sin}1^\circ= \\=d\sum^{90^\circ}_{i=1}\text{sin}n_i=57.79\text{ m}.


Using energy conservation, the final velocity:


v=2gH=29.857.79=33.7 m/s.v=\sqrt{2gH}=\sqrt{2\cdot9.8\cdot57.79}=33.7\text{ m/s}.

Ignoring friction and jumps at the edges where inclines are joined, we can try to calculate the time if that mass is falling from height H:


t=2Hg=257.799.8=3.43 s,t=\sqrt{\frac{2H}{g}}=\sqrt{\frac{2\cdot57.79}{9.8}}=3.43\text{ s},


and compare it with real time calculated according to the expression


t=i=190ti, ti=vi+vi12d=vi+vi12d, vi=2gd sin(90i).t=33.7 s.t=\sum^{90}_{i=1}t_i,\\ \space\\ t_i=\frac{v_i+v_{i-1}}{2d}=\frac{v_i+v_{i-1}}{2d},\\ \space\\ v_i=\sqrt{2gd\text{ sin}(90-i)^\circ}.\\ t=33.7\text{ s}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS