As per the given question,
y=0.8[(4x+5t)2+5]y =\dfrac{ 0.8}{[(4x+5t)^2+5]}y=[(4x+5t)2+5]0.8 here y is the displacement about the equilibrium,
So, displacement will be maximum, if denominator will be minimum,
⇒[(4x+5t)2]=0\Rightarrow [(4x+5t)^2]=0⇒[(4x+5t)2]=0
⇒4x+5t=0\Rightarrow 4x+5t=0⇒4x+5t=0
x=−5t/4x=-5t/4x=−5t/4
y=0.85=0.16y=\dfrac{0.8}{5}=0.16y=50.8=0.16
at t=0,
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments