As per the given question,
Mass of the lunar lander (M)=4000kg(M)=4000kg(M)=4000kg
Radius of orbit (R)=50km(R)=50km(R)=50km
Let the mass of the moon is m
Height =300km
Now,
v2R=GmR2\dfrac{v^2}{R}=\dfrac{Gm}{R^2}Rv2=R2Gm
v=GmRv=\sqrt{\dfrac{Gm}{R}}v=RGm
Now, applying the conservation of energy,
W=KE−PE=Mv22−GMmR+300kmW=KE-PE=\dfrac{Mv^2}{2}-\dfrac{GMm}{R+300km}W=KE−PE=2Mv2−R+300kmGMm
=4000×mG2×50×103−4000mG350×103=\dfrac{4000\times mG}{2\times50\times 10^{3}}-\dfrac{4000mG}{350\times 10^{3}}=2×50×1034000×mG−350×1034000mG
=4000mG50×103(12−17)=\dfrac{4000mG}{50\times 10^3}(\dfrac{1}{2}-\dfrac{1}{7})=50×1034000mG(21−71)
=2mG×525×14=mG35=\dfrac{2mG\times 5}{25\times 14}=\dfrac{mG}{35}=25×142mG×5=35mG
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments