As per the given question,
h=3.2m
let the mass of the first block="m_1"
and mass of the second block"(m_2)=5m_1"
kinetic friction "(\\mu_k)=0.3"
stopping distance(d)=?
Applying the conservation energy
"m_1gh=\\dfrac{m_1 v^2}{2}"
"\\Rightarrow v=\\sqrt{2gh}"
"\\Rightarrow v=\\sqrt{2\\times9.8\\times3.2}"
"\\Rightarrow v=7.91 m\/sec"
a) Now applying the conservation of momentum,
let the velocity after the collision is "v_2" and "V"
"m_1 v=m_2V+m_1 v_2"
"\\Rightarrow m_1\\times 7.91 =5m_1 V+m_1 v_2"
"\\Rightarrow 7.91=5V+v_2---------(i)"
"e=\\dfrac{V-v_2}{v_1}"
e=1
"\\Rightarrow v_1=V-v_2"
"7.91=V-v_2------------(ii)"
Now, adding the equation (i) and (ii)
"\\Rightarrow 6V=15.82m\/sec"
"\\Rightarrow V=\\dfrac{15.82}{6}=2.63m\/sec"
now, retardation ="\\mu g=0.3\\times 9.8=2.94 m\/sec^2"
"\\Rightarrow v^2=V^2-2as"
"\\Rightarrow 0=2.63^2-2\\times 2.94\\times s"
"s=\\dfrac{2.63\\times 2.63}{2\\times 2.94}=1.18 m"
ii) If collision is inelastic, let the final velocity is V2
"\\Rightarrow m_1v=(m_1+m_2)V_2"
"\\Rightarrow V_2=\\dfrac{m_1V}{m_1+m_2}"
"\\Rightarrow V_2=\\dfrac{m_1\\times7.91}{6m_1}=\\dfrac{7.91}{6}=1.31m\/sec"
"\\Rightarrow V_2=1.31 m\/sec"
"v^2=V^2-2(\\mu g)s"
"\\Rightarrow 0=1.31^2-2\\times 2.94 \\times s"
"\\Rightarrow s=\\dfrac{1.31\\times 1.31}{2\\times 2.94}=0.29m"
Comments
Leave a comment