Density of allowed quantum state in the valence band is given by formula
g v ( E ) = 4 π ( 2 m p ) 3 2 h 3 E v − E ( 1 ) g_v (E) = \frac {4 \pi {(2m_p)}^\frac {3}{2}}{h^3} \sqrt{E_v - E} (1) g v ( E ) = h 3 4 π ( 2 m p ) 2 3 E v − E ( 1 ) where h is the Planck's constant
Using (1) we have:
g T ( E ) = 4 π ( 2 m p ) 3 2 h 3 ∫ E v − k T E v E v − E d E ( 2 ) g_T (E) = \frac {4 \pi {(2m_p)}^\frac {3}{2}}{h^3} \int_{ E_v-kT }^ {E_v} \sqrt{E_v - E} dE (2) g T ( E ) = h 3 4 π ( 2 m p ) 2 3 ∫ E v − k T E v E v − E d E ( 2 )
After integrating (2) we got:
g T ( E ) = 4 π ( 2 m p ) 3 2 h 3 2 3 k T 3 2 ( 3 ) g_T (E) = \frac {4 \pi {(2m_p)}^\frac {3}{2}}{h^3} \frac {2}{3} {kT}^\frac {3}{2} (3) g T ( E ) = h 3 4 π ( 2 m p ) 2 3 3 2 k T 2 3 ( 3 ) where k is the Boltzmann constant
In our case, mp =0.56m0 (m0 =9.1×10-31 kg), T=300 K
Using (3) we got:
gT (E) = 4.08×1023 m-3
Answer:
4.08×1023 m-3
Comments